Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
2.
Genes (Basel) ; 14(1)2022 12 22.
Article in English | MEDLINE | ID: covidwho-2229491

ABSTRACT

Although advanced age, male sex, and some comorbidities impact the clinical course of COVID-19, these factors only partially explain the inter-individual variability in disease severity. Some studies have shown that genetic polymorphisms contribute to COVID-19 severity; however, the results are inconclusive. Thus, we investigated the association between polymorphisms in ACE1, ACE2, DPP9, IFIH1, IFNAR2, IFNL4, TLR3, TMPRSS2, and TYK2 and the clinical course of COVID-19. A total of 694 patients with COVID-19 were categorized as: (1) ward inpatients (moderate symptoms) or patients admitted at the intensive care unit (ICU; severe symptoms); and (2) survivors or non-survivors. In females, the rs1990760/IFIH1 T/T genotype was associated with risk of ICU admission and death. Moreover, the rs1799752/ACE1 Ins and rs12329760/TMPRSS2 T alleles were associated with risk of ICU admission. In non-white patients, the rs2236757/IFNAR2 A/A genotype was associated with risk of ICU admission, while the rs1799752/ACE1 Ins/Ins genotype, rs2236757/IFNAR2 A/A genotype, and rs12329760/TMPRSS2 T allele were associated with risk of death. Moreover, some of the analyzed polymorphisms interact in the risk of worse COVID-19 outcomes. In conclusion, this study shows an association of rs1799752/ACE1, rs1990760/IFIH1, rs2236757/IFNAR2, rs12329760/TMPRSS2, and rs2304256/TYK2 polymorphisms with worse COVID-19 outcomes, especially among female and non-white patients.


Subject(s)
COVID-19 , Humans , Male , Female , COVID-19/genetics , Interferon-Induced Helicase, IFIH1/genetics , Polymorphism, Genetic , Genotype , Disease Progression , TYK2 Kinase/genetics , Receptor, Interferon alpha-beta/genetics , Serine Endopeptidases/genetics , Interleukins/genetics
3.
Front Immunol ; 13: 949413, 2022.
Article in English | MEDLINE | ID: covidwho-1993792

ABSTRACT

Interferons (IFNs) are a group of cytokines with antiviral, antiproliferative, antiangiogenic, and immunomodulatory activities. Type I IFNs amplify and propagate the antiviral response by interacting with their receptors, IFNAR1 and IFNAR2. In COVID-19, the IFNAR2 (interferon alpha and beta receptor subunit 2) gene has been associated with the severity of the disease, but the soluble receptor (sIFNAR2) levels have not been investigated. We aimed to evaluate the association of IFNAR2 variants (rs2236757, rs1051393, rs3153, rs2834158, and rs2229207) with COVID-19 mortality and to assess if there was a relation between the genetic variants and/or the clinical outcome, with the levels of sIFNAR2 in plasma samples from hospitalized individuals with severe COVID-19. We included 1,202 subjects with severe COVID-19. The genetic variants were determined by employing Taqman® assays. The levels of sIFNAR2 were determined with ELISA in plasma samples from a subgroup of 351 individuals. The rs2236757, rs3153, rs1051393, and rs2834158 variants were associated with mortality risk among patients with severe COVID-19. Higher levels of sIFNAR2 were observed in survivors of COVID-19 compared to the group of non-survivors, which was not related to the studied IFNAR2 genetic variants. IFNAR2, both gene, and soluble protein, are relevant in the clinical outcome of patients hospitalized with severe COVID-19.


Subject(s)
COVID-19 , Interferon Type I , Receptor, Interferon alpha-beta , COVID-19/genetics , COVID-19/mortality , Hospitalization , Humans , Interferon Type I/genetics , Interferon-alpha/genetics , Receptor, Interferon alpha-beta/genetics
4.
J Exp Med ; 219(6)2022 06 06.
Article in English | MEDLINE | ID: covidwho-1830916

ABSTRACT

In this issue of JEM, Bastard et al. (2022. J. Exp. Med.https://doi.org/10.1084/jem.20220028) show that a loss-of-function IFNAR1 allele is common in western Polynesians, while Duncan et al. (2022. J. Exp. Med.https://doi.org/10.1084/jem.20212427) report that a loss-of-function IFNAR2 allele is common in Inuits. Homozygotes lack type I IFN immunity but are selectively vulnerable to influenza, COVID-19 pneumonia, and complications of live-attenuated viral vaccines.


Subject(s)
Receptor, Interferon alpha-beta , Alleles , COVID-19/genetics , COVID-19/immunology , Humans , Influenza, Human/genetics , Influenza, Human/immunology , Inuit , Polynesia , Receptor, Interferon alpha-beta/genetics
5.
Cytokine ; 153: 155849, 2022 05.
Article in English | MEDLINE | ID: covidwho-1783275

ABSTRACT

As a member of JAK family of non-receptor tyrosine kinases, TYK2 has a crucial role in regulation of immune responses. This protein has a crucial role in constant expression of IFNAR1 on surface of cells and initiation of type I IFN signaling. In the current study, we measured expression of IFNAR1 and TYK2 levels in venous blood samples of COVID-19 patients and matched controls. TYK2 was significantly down-regulated in male patients compared with male controls (RME = 0.34, P value = 0.03). Though, levels of TYK2 were not different between female cases and female controls, or between ICU-admitted and non-ICU-admitted cases. Expression of IFNAR1 was not different either between COVID-19 cases and controls or between patients required ICU admission and non-ICU-admitted cases. However, none of these transcripts can properly diffrentiate COVID-19 cases from controls or separate patients based on disease severity. The current study proposes down-regulation of TYK2 as a molecular mechanism for incapacity of SARS-CoV-2 in induction of a competent IFN response.


Subject(s)
COVID-19 , Female , Humans , Male , Proteins/metabolism , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/metabolism , SARS-CoV-2 , TYK2 Kinase/genetics , TYK2 Kinase/metabolism
6.
J Clin Immunol ; 42(3): 471-483, 2022 04.
Article in English | MEDLINE | ID: covidwho-1653615

ABSTRACT

BACKGROUND: Inborn errors of immunity (IEI) and autoantibodies to type I interferons (IFNs) underlie critical COVID-19 pneumonia in at least 15% of the patients, while the causes of multisystem inflammatory syndrome in children (MIS-C) remain elusive. OBJECTIVES: To detect causal genetic variants in very rare cases with concomitant critical COVID-19 pneumonia and MIS-C. METHODS: Whole exome sequencing was performed, and the impact of candidate gene variants was investigated. Plasma levels of cytokines, specific antibodies against the virus, and autoantibodies against type I IFNs were also measured. RESULTS: We report a 3-year-old child who died on day 56 of SARS-CoV-2 infection with an unusual clinical presentation, combining both critical COVID-19 pneumonia and MIS-C. We identified a large, homozygous loss-of-function deletion in IFNAR1, underlying autosomal recessive IFNAR1 deficiency. CONCLUSIONS: Our findings confirm that impaired type I IFN immunity can underlie critical COVID-19 pneumonia, while suggesting that it can also unexpectedly underlie concomitant MIS-C. Our report further raises the possibility that inherited or acquired dysregulation of type I IFN immunity might contribute to MIS-C in other patients.


Subject(s)
COVID-19 , Interferon Type I , Autoantibodies , COVID-19/complications , Child, Preschool , Cytokines , Humans , Receptor, Interferon alpha-beta/genetics , SARS-CoV-2 , Systemic Inflammatory Response Syndrome
7.
Viruses ; 14(1)2021 12 29.
Article in English | MEDLINE | ID: covidwho-1639272

ABSTRACT

Inactivated vaccines based on cell culture are very useful in the prevention and control of many diseases. The most popular strategy for the production of inactivated vaccines is based on monkey-derived Vero cells, which results in high productivity of the virus but has a certain carcinogenic risk due to non-human DNA contamination. Since human diploid cells, such as MRC-5 cells, can produce a safer vaccine, efforts to develop a strategy for inactivated vaccine production using these cells have been investigated using MRC-5 cells. However, most viruses do not replicate efficiently in MRC-5 cells. In this study, we found that rabies virus (RABV) infection activated a robust interferon (IFN)-ß response in MRC-5 cells but almost none in Vero cells, suggesting that the IFN response could be a key limiting factor for virus production. Treatment of the MRC-5 cells with IFN inhibitors increased RABV titers by 10-fold. Additionally, the RABV titer yield was improved five-fold when using IFN receptor 1 (IFNAR1) antibodies. As such, we established a stable IFNAR1-deficient MRC-5 cell line (MRC-5IFNAR1-), which increased RABV production by 6.5-fold compared to normal MRC-5 cells. Furthermore, in a pilot-scale production in 1500 square centimeter spinner flasks, utilization of the MRC-5IFNAR1- cell line or the addition of IFN inhibitors to MRC cells increased RABV production by 10-fold or four-fold, respectively. Thus, we successfully established a human diploid cell-based pilot scale virus production platform via inhibition of IFN response for rabies vaccines, which could also be used for other inactivated virus vaccine production.


Subject(s)
Diploidy , Interferons/pharmacology , Rabies Vaccines/immunology , Rabies virus , Rabies/prevention & control , Animals , Antibodies, Viral , Cell Line , Chlorocebus aethiops , Gene Expression , Humans , Interferons/genetics , Receptor, Interferon alpha-beta/genetics , Vaccines, Inactivated/immunology , Vero Cells
8.
Viruses ; 14(1)2021 12 21.
Article in English | MEDLINE | ID: covidwho-1580414

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a severe global pandemic. Mice models are essential to investigate infection pathology, antiviral drugs, and vaccine development. However, wild-type mice lack the human angiotensin-converting enzyme 2 (hACE2) that mediates SARS-CoV-2 entry into human cells and consequently are not susceptible to SARS-CoV-2 infection. hACE2 transgenic mice could provide an efficient COVID-19 model, but are not always readily available, and practically restricted to specific strains. Therefore, there is a dearth of additional mouse models for SARS-CoV-2 infection. We applied lentiviral vectors to generate hACE2 expression in interferon receptor knock-out (IFNAR1-/-) mice. Lenti-hACE2 transduction supported SARS-CoV-2 replication in vivo, simulating mild acute lung disease. Gene expression analysis revealed two modes of immune responses to SARS-CoV-2 infection: one in response to the exposure of mouse lungs to SARS-CoV-2 particles in the absence of productive viral replication, and the second in response to productive SARS-CoV-2 infection. Our results infer that immune response to immunogenic elements on incoming virus or in productively infected cells stimulate diverse immune effectors, even in absence of type I IFN signaling. Our findings should contribute to a better understanding of the immune response triggered by SARS-CoV-2 and to further elucidate COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/immunology , Disease Models, Animal , Lentivirus/genetics , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/virology , Cell Line , Humans , Immunity/genetics , Lung/immunology , Lung/virology , Mice , Mice, Transgenic , Receptor, Interferon alpha-beta/genetics , Transduction, Genetic , Virus Replication
9.
J Glob Antimicrob Resist ; 26: 239-240, 2021 09.
Article in English | MEDLINE | ID: covidwho-1309281

ABSTRACT

Recent COVID-19 (coronavirus disease 2019) host genetics studies suggest enrichment of mutations in genes involved in the regulation of type I and type III interferon (IFN) immunity in patients with severe COVID-19 infection. We performed whole-genome sequencing analysis of samples obtained from patients participating in the ongoing ODYSSEY phase 3 study of hospitalised patients with severe COVID-19 infection receiving supplemental oxygen support. We focused on burden testing of categories of rare and common loss-of-function (LOF) variants in all of the IFN pathway genes, specifically with MAF < 0.1% and MAF < 1%. In a model including LOF and missense variants (MAF < 1%), we report a significant signal in both INFAR1 and IFNAR2. We report carriers of rare variants in our COVID-19 cohort, including a stop-gain IFNAR2 (NM_000874:exon9:c.C966A:p.Y322X) amongst carriers of several other IFNAR rare nonsynonymous variants. Furthermore, we report an increased allelic frequency of common IFNAR2 variants in our data, reported also by the COVID-19 Host Genetics Initiative.


Subject(s)
COVID-19 , Gene Frequency , Genetic Predisposition to Disease , Humans , Mutation , Receptor, Interferon alpha-beta/genetics , SARS-CoV-2
10.
Hum Mol Genet ; 30(13): 1247-1258, 2021 06 17.
Article in English | MEDLINE | ID: covidwho-1216653

ABSTRACT

The systematic identification of host genetic risk factors is essential for the understanding and treatment of coronavirus disease 2019 (COVID-19). By performing a meta-analysis of two independent genome-wide association summary datasets (N = 680 128), a novel locus at 21q22.11 was identified to be associated with COVID-19 infection (rs9976829 in IFNAR2-IL10RB, odds ratio = 1.16, 95% confidence interval = 1.09-1.23, P = 2.57 × 10-6). The rs9976829 represents a strong splicing quantitative trait locus for both IFNAR2 and IL10RB genes, especially in lung tissue (P = 1.8 × 10-24). Integrative genomics analysis of combining genome-wide association study with expression quantitative trait locus data showed the expression variations of IFNAR2 and IL10RB have prominent effects on COVID-19 in various types of tissues, especially in lung tissue. The majority of IFNAR2-expressing cells were dendritic cells (40%) and plasmacytoid dendritic cells (38.5%), and IL10RB-expressing cells were mainly nonclassical monocytes (29.6%). IFNAR2 and IL10RB are targeted by several interferons-related drugs. Together, our results uncover 21q22.11 as a novel susceptibility locus for COVID-19, in which individuals with G alleles of rs9976829 have a higher probability of COVID-19 susceptibility than those with non-G alleles.


Subject(s)
COVID-19/genetics , Chromosomes, Human, Pair 21 , Interleukin-10 Receptor beta Subunit/genetics , Receptor, Interferon alpha-beta/genetics , Alleles , Antiviral Agents/pharmacology , COVID-19/immunology , Cytokines/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Genomics/methods , Humans , Molecular Targeted Therapy , Polymorphism, Single Nucleotide , Quantitative Trait Loci , COVID-19 Drug Treatment
11.
Brain Behav Immun ; 95: 413-428, 2021 07.
Article in English | MEDLINE | ID: covidwho-1198626

ABSTRACT

Double stranded RNA is generated during viral replication. The synthetic analogue poly I:C is frequently used to mimic anti-viral innate immune responses in models of psychiatric and neurodegenerative disorders including schizophrenia, autism, Parkinson's disease and Alzheimer's disease. Many studies perform limited analysis of innate immunity despite these responses potentially differing as a function of dsRNA molecular weight and age. Therefore fundamental questions relevant to impacts of systemic viral infection on brain function and integrity remain. Here, we studied innate immune-inducing properties of poly I:C preparations of different lengths and responses in adult and aged mice. High molecular weight (HMW) poly I:C (1-6 kb, 12 mg/kg) produced more robust sickness behavior and more robust IL-6, IFN-I and TNF-α responses than poly I:C of < 500 bases (low MW) preparations. This was partly overcome with higher doses of LMW (up to 80 mg/kg), but neither circulating IFNß nor brain transcription of Irf7 were significantly induced by LMW poly I:C, despite brain Ifnb transcription, suggesting that brain IFN-dependent gene expression is predominantly triggered by circulating IFNß binding of IFNAR1. In aged animals, poly I:C induced exaggerated IL-6, IL-1ß and IFN-I in the plasma and similar exaggerated brain cytokine responses. This was associated with acute working memory deficits selectively in aged mice. Thus, we demonstrate dsRNA length-, IFNAR1- and age-dependent effects on anti-viral inflammation and cognitive function. The data have implications for CNS symptoms of acute systemic viral infection such as those with SARS-CoV-2 and for models of maternal immune activation.


Subject(s)
COVID-19 , Cognitive Dysfunction , Animals , Humans , Illness Behavior , Immunity, Innate , Mice , Poly I-C , RNA, Double-Stranded , Receptor, Interferon alpha-beta/genetics , SARS-CoV-2
12.
Nat Med ; 27(4): 668-676, 2021 04.
Article in English | MEDLINE | ID: covidwho-1174686

ABSTRACT

Drug repurposing provides a rapid approach to meet the urgent need for therapeutics to address COVID-19. To identify therapeutic targets relevant to COVID-19, we conducted Mendelian randomization analyses, deriving genetic instruments based on transcriptomic and proteomic data for 1,263 actionable proteins that are targeted by approved drugs or in clinical phase of drug development. Using summary statistics from the Host Genetics Initiative and the Million Veteran Program, we studied 7,554 patients hospitalized with COVID-19 and >1 million controls. We found significant Mendelian randomization results for three proteins (ACE2, P = 1.6 × 10-6; IFNAR2, P = 9.8 × 10-11 and IL-10RB, P = 2.3 × 10-14) using cis-expression quantitative trait loci genetic instruments that also had strong evidence for colocalization with COVID-19 hospitalization. To disentangle the shared expression quantitative trait loci signal for IL10RB and IFNAR2, we conducted phenome-wide association scans and pathway enrichment analysis, which suggested that IFNAR2 is more likely to play a role in COVID-19 hospitalization. Our findings prioritize trials of drugs targeting IFNAR2 and ACE2 for early management of COVID-19.


Subject(s)
COVID-19/genetics , Drug Repositioning , Mendelian Randomization Analysis/methods , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/physiology , Genome-Wide Association Study , Humans , Interleukin-10 Receptor beta Subunit/genetics , Interleukin-10 Receptor beta Subunit/physiology , Quantitative Trait Loci , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/physiology , COVID-19 Drug Treatment
13.
Nature ; 591(7848): 92-98, 2021 03.
Article in English | MEDLINE | ID: covidwho-971937

ABSTRACT

Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice.


Subject(s)
COVID-19/genetics , COVID-19/physiopathology , Critical Illness , 2',5'-Oligoadenylate Synthetase/genetics , COVID-19/pathology , Chromosomes, Human, Pair 12/genetics , Chromosomes, Human, Pair 19/genetics , Chromosomes, Human, Pair 21/genetics , Critical Care , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Drug Repositioning , Female , Genome-Wide Association Study , Humans , Inflammation/genetics , Inflammation/pathology , Inflammation/physiopathology , Lung/pathology , Lung/physiopathology , Lung/virology , Male , Multigene Family/genetics , Receptor, Interferon alpha-beta/genetics , Receptors, CCR2/genetics , TYK2 Kinase/genetics , United Kingdom
14.
J Infect ; 82(1): 126-132, 2021 01.
Article in English | MEDLINE | ID: covidwho-947286

ABSTRACT

OBJECTIVES: COVID-19 has caused a large global pandemic. Patients with COVID-19 exhibited considerable variation in disease behavior. Pervious genome-wide association studies have identified potential genetic variants involved in the risk and prognosis of COVID-19, but the underlying biological interpretation remains largely unclear. METHODS: We applied the summary data-based Mendelian randomization (SMR) method to identify genes that were pleiotropically associated with the risk and various outcomes of COVID-19, including severe respiratory confirmed COVID-19 and hospitalized COVID-19. RESULTS: In blood, we identified 2 probes, ILMN_1765146 and ILMN_1791057 tagging IFNAR2, that showed pleiotropic association with hospitalized COVID-19 (ß [SE]=0.42 [0.09], P = 4.75 × 10-06 and ß [SE]=-0.48 [0.11], P = 6.76 × 10-06, respectively). Although no other probes were significant after correction for multiple testing in both blood and lung, multiple genes as tagged by the top 5 probes were involved in inflammation or antiviral immunity, and several other tagged genes, such as PON2 and HPS5, were involved in blood coagulation. CONCLUSIONS: We identified IFNAR2 and other potential genes that could be involved in the susceptibility or prognosis of COVID-19. These findings provide important leads to a better understanding of the mechanisms of cytokine storm and venous thromboembolism in COVID-19 and potential therapeutic targets for the effective treatment of COVID-19.


Subject(s)
COVID-19/epidemiology , Genetic Variation/genetics , Genome-Wide Association Study/methods , Mendelian Randomization Analysis , SARS-CoV-2/genetics , Aryldialkylphosphatase/genetics , Blood Coagulation/genetics , COVID-19/mortality , Carrier Proteins/genetics , Cytokine Release Syndrome/genetics , Cytokine Release Syndrome/pathology , Genetic Predisposition to Disease/genetics , Humans , Prognosis , Receptor, Interferon alpha-beta/genetics , Risk , Venous Thromboembolism/genetics , Venous Thromboembolism/pathology
16.
J Allergy Clin Immunol ; 147(2): 510-519.e5, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-872184

ABSTRACT

BACKGROUND: The mechanisms underlying altered susceptibility and propensity to severe Coronavirus disease 2019 (COVID-19) disease in at-risk groups such as patients with chronic obstructive pulmonary disease (COPD) are poorly understood. Inhaled corticosteroids (ICSs) are widely used in COPD, but the extent to which these therapies protect or expose patients to risk of severe COVID-19 is unknown. OBJECTIVE: The aim of this study was to evaluate the effect of ICSs following pulmonary expression of the SARS-CoV-2 viral entry receptor angiotensin-converting enzyme-2 (ACE2). METHODS: We evaluated the effect of ICS administration on pulmonary ACE2 expression in vitro in human airway epithelial cell cultures and in vivo in mouse models of ICS administration. Mice deficient in the type I IFN-α/ß receptor (Ifnar1-/-) and administration of exogenous IFN-ß were used to study the functional role of type-I interferon signaling in ACE2 expression. We compared sputum ACE2 expression in patients with COPD stratified according to use or nonuse of ICS. RESULTS: ICS administration attenuated ACE2 expression in mice, an effect that was reversed by exogenous IFN-ß administration, and Ifnar1-/- mice had reduced ACE2 expression, indicating that type I interferon contributes mechanistically to this effect. ICS administration attenuated expression of ACE2 in airway epithelial cell cultures from patients with COPD and in mice with elastase-induced COPD-like changes. Compared with ICS nonusers, patients with COPD who were taking ICSs also had reduced sputum expression of ACE2. CONCLUSION: ICS therapies in COPD reduce expression of the SARS-CoV-2 entry receptor ACE2. This effect may thus contribute to altered susceptibility to COVID-19 in patients with COPD.


Subject(s)
Adrenal Cortex Hormones/administration & dosage , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , COVID-19 , Interferon Type I/antagonists & inhibitors , Pulmonary Disease, Chronic Obstructive/immunology , SARS-CoV-2 , Administration, Inhalation , Aged , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , Bronchi/cytology , Cells, Cultured , Disease Susceptibility , Down-Regulation/drug effects , Epithelial Cells/drug effects , Epithelial Cells/immunology , Female , Humans , Interferon Type I/immunology , Lung/drug effects , Lung/immunology , Male , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Pulmonary Disease, Chronic Obstructive/genetics , Receptor, Interferon alpha-beta/genetics , Serine Endopeptidases/genetics
17.
J Virol ; 94(20)2020 09 29.
Article in English | MEDLINE | ID: covidwho-840609

ABSTRACT

Alpha/beta interferon (IFN-α/ß) signaling through the IFN-α/ß receptor (IFNAR) is essential to limit virus dissemination throughout the central nervous system (CNS) following many neurotropic virus infections. However, the distinct expression patterns of factors associated with the IFN-α/ß pathway in different CNS resident cell populations implicate complex cooperative pathways in IFN-α/ß induction and responsiveness. Here we show that mice devoid of IFNAR1 signaling in calcium/calmodulin-dependent protein kinase II alpha (CaMKIIα) expressing neurons (CaMKIIcre:IFNARfl/fl mice) infected with a mildly pathogenic neurotropic coronavirus (mouse hepatitis virus A59 strain [MHV-A59]) developed severe encephalomyelitis with hind-limb paralysis and succumbed within 7 days. Increased virus spread in CaMKIIcre:IFNARfl/fl mice compared to IFNARfl/fl mice affected neurons not only in the forebrain but also in the mid-hind brain and spinal cords but excluded the cerebellum. Infection was also increased in glia. The lack of viral control in CaMKIIcre:IFNARfl/fl relative to control mice coincided with sustained Cxcl1 and Ccl2 mRNAs but a decrease in mRNA levels of IFNα/ß pathway genes as well as Il6, Tnf, and Il1ß between days 4 and 6 postinfection (p.i.). T cell accumulation and IFN-γ production, an essential component of virus control, were not altered. However, IFN-γ responsiveness was impaired in microglia/macrophages irrespective of similar pSTAT1 nuclear translocation as in infected controls. The results reveal how perturbation of IFN-α/ß signaling in neurons can worsen disease course and disrupt complex interactions between the IFN-α/ß and IFN-γ pathways in achieving optimal antiviral responses.IMPORTANCE IFN-α/ß induction limits CNS viral spread by establishing an antiviral state, but also promotes blood brain barrier integrity, adaptive immunity, and activation of microglia/macrophages. However, the extent to which glial or neuronal signaling contributes to these diverse IFN-α/ß functions is poorly understood. Using a neurotropic mouse hepatitis virus encephalomyelitis model, this study demonstrated an essential role of IFN-α/ß receptor 1 (IFNAR1) specifically in neurons to control virus spread, regulate IFN-γ signaling, and prevent acute mortality. The results support the notion that effective neuronal IFNAR1 signaling compensates for their low basal expression of genes in the IFN-α/ß pathway compared to glia. The data further highlight the importance of tightly regulated communication between the IFN-α/ß and IFN-γ signaling pathways to optimize antiviral IFN-γ activity.


Subject(s)
Central Nervous System/virology , Interferon Type I/metabolism , Interferon-gamma/metabolism , Macrophages/metabolism , Microglia/metabolism , Neurons/metabolism , Signal Transduction , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Central Nervous System/immunology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Disease Models, Animal , Encephalomyelitis/immunology , Encephalomyelitis/virology , Macrophages/virology , Mice , Mice, Mutant Strains , Microglia/virology , Murine hepatitis virus/physiology , Neurons/virology , Neutrophil Infiltration , Receptor, Interferon alpha-beta/deficiency , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/metabolism , Virus Replication
18.
Science ; 370(6515)2020 10 23.
Article in English | MEDLINE | ID: covidwho-796722

ABSTRACT

Clinical outcome upon infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ranges from silent infection to lethal coronavirus disease 2019 (COVID-19). We have found an enrichment in rare variants predicted to be loss-of-function (LOF) at the 13 human loci known to govern Toll-like receptor 3 (TLR3)- and interferon regulatory factor 7 (IRF7)-dependent type I interferon (IFN) immunity to influenza virus in 659 patients with life-threatening COVID-19 pneumonia relative to 534 subjects with asymptomatic or benign infection. By testing these and other rare variants at these 13 loci, we experimentally defined LOF variants underlying autosomal-recessive or autosomal-dominant deficiencies in 23 patients (3.5%) 17 to 77 years of age. We show that human fibroblasts with mutations affecting this circuit are vulnerable to SARS-CoV-2. Inborn errors of TLR3- and IRF7-dependent type I IFN immunity can underlie life-threatening COVID-19 pneumonia in patients with no prior severe infection.


Subject(s)
Coronavirus Infections/genetics , Coronavirus Infections/immunology , Interferon Type I/immunology , Loss of Function Mutation , Pneumonia, Viral/genetics , Pneumonia, Viral/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Alleles , Asymptomatic Infections , Betacoronavirus , COVID-19 , Child , Child, Preschool , Female , Genetic Loci , Genetic Predisposition to Disease , Humans , Infant , Interferon Regulatory Factor-7/deficiency , Interferon Regulatory Factor-7/genetics , Male , Middle Aged , Pandemics , Receptor, Interferon alpha-beta/deficiency , Receptor, Interferon alpha-beta/genetics , SARS-CoV-2 , Toll-Like Receptor 3/deficiency , Toll-Like Receptor 3/genetics , Young Adult
19.
Sci Adv ; 6(35): eaba7910, 2020 08.
Article in English | MEDLINE | ID: covidwho-760200

ABSTRACT

Targeting a universal host protein exploited by most viruses would be a game-changing strategy that offers broad-spectrum solution and rapid pandemic control including the current COVID-19. Here, we found a common YxxØ-motif of multiple viruses that exploits host AP2M1 for intracellular trafficking. A library chemical, N-(p-amylcinnamoyl)anthranilic acid (ACA), was identified to interrupt AP2M1-virus interaction and exhibit potent antiviral efficacy against a number of viruses in vitro and in vivo, including the influenza A viruses (IAVs), Zika virus (ZIKV), human immunodeficiency virus, and coronaviruses including MERS-CoV and SARS-CoV-2. YxxØ mutation, AP2M1 depletion, or disruption by ACA causes incorrect localization of viral proteins, which is exemplified by the failure of nuclear import of IAV nucleoprotein and diminished endoplasmic reticulum localization of ZIKV-NS3 and enterovirus-A71-2C proteins, thereby suppressing viral replication. Our study reveals an evolutionarily conserved mechanism of protein-protein interaction between host and virus that can serve as a broad-spectrum antiviral target.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , Antiviral Agents/pharmacology , Cinnamates/pharmacology , Coronavirus Infections/drug therapy , HIV Infections/drug therapy , Influenza, Human/drug therapy , Pneumonia, Viral/drug therapy , ortho-Aminobenzoates/pharmacology , A549 Cells , Animals , Betacoronavirus/drug effects , Binding Sites/genetics , COVID-19 , Cell Line, Tumor , Chlorocebus aethiops , Coronavirus Infections/pathology , Dogs , HEK293 Cells , HIV Infections/pathology , HIV-1/drug effects , Host-Pathogen Interactions/drug effects , Humans , Influenza A virus/drug effects , Influenza, Human/pathology , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Middle East Respiratory Syndrome Coronavirus/drug effects , Pandemics , Pneumonia, Viral/pathology , Protein Binding/genetics , Protein Transport/drug effects , RNA, Viral/genetics , Receptor, Interferon alpha-beta/genetics , SARS-CoV-2 , Transforming Growth Factor beta1/metabolism , Vero Cells , Virus Replication/drug effects , Zika Virus/drug effects , Zika Virus Infection/pathology
20.
J Exp Med ; 217(12)2020 12 07.
Article in English | MEDLINE | ID: covidwho-726090

ABSTRACT

Type I interferons (IFN-I) are a major antiviral defense and are critical for the activation of the adaptive immune system. However, early viral clearance by IFN-I could limit antigen availability, which could in turn impinge upon the priming of the adaptive immune system. In this study, we hypothesized that transient IFN-I blockade could increase antigen presentation after acute viral infection. To test this hypothesis, we infected mice with viruses coadministered with a single dose of IFN-I receptor-blocking antibody to induce a short-term blockade of the IFN-I pathway. This resulted in a transient "spike" in antigen levels, followed by rapid antigen clearance. Interestingly, short-term IFN-I blockade after coronavirus, flavivirus, rhabdovirus, or arenavirus infection induced a long-lasting enhancement of immunological memory that conferred improved protection upon subsequent reinfections. Short-term IFN-I blockade also improved the efficacy of viral vaccines. These findings demonstrate a novel mechanism by which IFN-I regulate immunological memory and provide insights for rational vaccine design.


Subject(s)
Immunogenicity, Vaccine/immunology , Interferon Type I/antagonists & inhibitors , Interferon-alpha/immunology , Receptor, Interferon alpha-beta/immunology , Viral Vaccines/immunology , Zika Virus Infection/immunology , Zika Virus/immunology , Animals , Antibodies, Blocking/immunology , Antibodies, Blocking/pharmacology , Antibodies, Viral/immunology , Antigen Presentation/immunology , CD8-Positive T-Lymphocytes/metabolism , Dendritic Cells/immunology , Disease Models, Animal , Gene Expression/immunology , HEK293 Cells , Humans , Immunologic Memory , Interferon-alpha/genetics , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Receptor, Interferon alpha-beta/genetics , Transfection , Zika Virus Infection/virology
SELECTION OF CITATIONS
SEARCH DETAIL